好上學,職校招生與學歷提升信息網(wǎng)。

分站導航

熱點關注

好上學在線報名

在線咨詢

8:00-22:00

當前位置:

好上學

>

職校資訊

>

招生要求

等比數(shù)列的求和公式是什么

來源:好上學 ??時間:2023-09-09

今天,好上學小編為大家?guī)Я说缺葦?shù)列的求和公式是什么,希望能幫助到廣大考生和家長,一起來看看吧!
等比數(shù)列的求和公式是什么

  • 等比數(shù)列的求和公式是什么它是 推理 的
  • 等比數(shù)列求和公式

等比數(shù)列的求和公式是什么


等比數(shù)列的求和公式是什么

等差數(shù)列和公式 Sn=n(a1+an)/2=na1+n(n-1)/2 d 等比數(shù)列求和公式 q≠1時 Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q) q=1時Sn=na1 (a1為首項,an為第n項,d為公差,q 為等比)

請問等比數(shù)列的求和公式是什么它是怎樣推理出來的


等比數(shù)列的求和公式是什么

解:當公比為1時。Sn=nA1 當公比為q(q不為1時)Sn=A1(q^n-1)/(q-1) 推導 如下;錯位相減法 Sn=A1+A2+……+An (1) qSn=A2+A3+……+A(n+1) (2) (2)-(1)得 (q-1)Sn=A(n+1)-A1=A1(q^n-1) 所以Sn=A1(q^n-1)/(q-1)

等比數(shù)列求和公式是什么樣的


等比數(shù)列的求和公式是什么

等比數(shù)列 (1)等比數(shù)列:An+1/An=q, n為自然數(shù)。 (2)通項公式:An=A1*q^(n-1); 式: An=Am·q^(n-m); (3)求和公式:Sn=nA1(q=1) Sn=[A1(1-q)^n]/(1-q) (4)性質(zhì): ①若 m、n、p、q∈N,且m+n=p+q,則am·an=ap*aq; ②在等比數(shù)列中,依次每 k項之和仍成等比數(shù)列. (5)“G是a、的等比中項”“G^2=a(G≠0)”. (6)在等比數(shù)列中,首項A1與公比q都不為零. 注意:上述公式中A^n表示A的n次方。

等比數(shù)列的求和公式

5^1+5^2+5^3+...+5^25=5*(1-5^25)/(1-5)=5/4(5^25-1); 等比數(shù)列的求和公式: Sn=a1(1-q^n)/(1-q); a1:首項; q:公比 n:項數(shù)

奇數(shù)項是首項為a1 公比為q^2 的等比數(shù)列 偶數(shù)項是首項為a2 公比為q^2 的等比數(shù)列 求和公式參照等比數(shù)列求和公式

等比數(shù)列的求和公式 當q=1時,Sn=na1 當q≠1時,Sn=a1(1-q^n)/(1-q); 常數(shù)列即是等差數(shù)列,又是等比數(shù)列 和為5*25=125

等比數(shù)列求和公式

等比數(shù)列:a (n+1)/an=q (n∈N)。 求和公式:Sn=n×a1 (q=1) Sn=a1(1-q^n)/(1-q) =(a1-an×q)/(1-q) (q≠1) (q為公比,n為項數(shù))

首項a1,公比q a(n+1)=an*q=a1*q^(n Sn=a1+a2+..+an q*Sn=a2+a3+...+a(n+1) qSn-Sn=a(n+1)-a1 S=a1(q^n-1)/(q-1

設sn=1/a+1/a^2+1/a^3+1/a^4+……1/a^n 從數(shù)列形式知,此數(shù)列為等比數(shù)列,且, 該數(shù)列的通項an=1/a^n=(1/a)*(1/a)^(n-1) ∴sn=1/a*(1-(1/a)^n)/(1-1/a)=[1-(1/a)^n]/(a-1)

請解釋等比數(shù)列求和公式

(1) 等比數(shù)列:a (n+1)/an=q (n∈N)。 (2) 通項公式:an=a1×q^(n-1); 推廣式:an=am×q^(n-m); (3) 求和公式:Sn=n×a1 (q=1) Sn=a1(1-q^n)/(1-q) =(a1-an×q)/(1-q) (q≠1) (q為比值,n為項數(shù)) (4)性質(zhì): ①若 m、n、p、q∈N,且m+n=p+q,則am×an=ap×aq; ②在等比數(shù)列中,依次每 k項之和仍成等比數(shù)列. ③若m、n、q∈N,且m+n=2q,則am×an=aq^2 (5)"G是a、的等比中項""G^2=a(G ≠ 0)". (6)在等比數(shù)列中,首項a1與公比q都不為零. 注意:上述公式中an表示等比數(shù)列的第n項。 等比數(shù)列求和公式推導: Sn=a1+a2+a3+...+an(公比為q) q*Sn=a1*q+a2*q+a3*q+...+an*q =a2+a3+a4+...+a(n+1) Sn-q*Sn=a1-a(n+1) (1-q)Sn=a1-a1*q^n Sn=(a1-a1*q^n)/(1-q) Sn=a1(1-q^n)/(1-q)

等比數(shù)列的求和公式有哪些

等比數(shù)列求和公式 (1) 等比數(shù)列:a (n+1)/an=q (n∈N)。 (2) 通項公式:an=a1×q^(n-1); 推廣式:an=am×q^(n-m); (3) 求和公式:Sn=n×a1 (q=1) Sn=a1(1-q^n)/(1-q) =(a1-an×q)/(1-q) (q≠1) (q為公比,n為項數(shù)) (4)性質(zhì): ①若 m、n、p、q∈N,且m+n=p+q,則am×an=ap×aq; ②在等比數(shù)列中,依次每 k項之和仍成等比數(shù)列. ③若m、n、q∈N,且m+n=2q,則am×an=aq^2 (5)"G是a、的等比中項""G^2=a(G ≠ 0)". (6)在等比數(shù)列中,首項a1與公比q都不為零. 注意:上述公式中an表示等比數(shù)列的第n項。 等比數(shù)列求和公式推導: Sn=a1+a2+a3+...+an(公比為q) q*Sn=a1*q+a2*q+a3*q+...+an*q =a2+a3+a4+...+a(n+1) Sn-q*Sn=a1-a(n+1) (1-q)Sn=a1-a1*q^n Sn=(a1-a1*q^n)/(1-q) Sn=(a1-an*q)/(1-q) Sn=a1(1-q^n)/(1-q) Sn=k*(1-q^n)~y=k*(1-a^x)

以上就是好上學整理的等比數(shù)列的求和公式是什么相關內(nèi)容,想要了解更多信息,敬請查閱好上學。

標簽:??

分享:

qq好友分享 QQ空間分享 新浪微博分享 微信分享 更多分享方式
(c)2025 m.vxtrzfn.cn All Rights Reserved SiteMap 聯(lián)系我們 | 浙ICP備2023018783號